
J. Fluid Mech. (1971), vol. 45, part 4, pp. 673-699 

Printed in Grea1 Britain 
673 

An exact solution of linearized flow of an emitting, 
absorbing and scattering grey gas 

By PING CHENGT 
NASA-Ames Research Center, Moffett Field, California 

A N D  A. LEONARD 
Stanford University, Stanford, California 

(Received 7 October 1969 and in revised form 24 August 1970) 

The governing equations for the problem of linearized flow through a normal 
shock wave in an emitting, absorbing, and scattering grey gas are reduced to 
two linear coupled integro-differential equations. By separation of variables, 
these equations are further reduced to an integral equation similar to that which 
arises in neutron-transport theory. It is shown that this integral equation 
admits both regular (associated with discrete eigenfunctions) and singular 
(associated with continuum eigenfunctions) solutions to form a complete set. 
The exact closed-form solution is obtained by superposition of these eigen- 
functions. If the gas downstream of a strong shock is absorption-emission 
dominated, the discrete mode of the solution disappears downstream. The 
effects of isotropic scattering are discussed. Quantitative comparison between 
the numerical results based on the exact solution and on the differential approxi- 
mation are presented. 

1. Introduction 
The present work is motivated by the desire to obtain an exact solution in 

the linearized analysis of a problem in radiative gasdynamics, taking into 
account the effect of scattering. The purpose of this paper is therefore threefold: 
first, to investigate the effect of scattering in radiative gasdynamics; second, to 
assess the accuracy of the differential approximation when scattering is taken 
into consideration; and, third, to provide some exact numerical results as a 
testing case for solutions based on other approximate techniques in radiative 
gasdynamics. 

The physical problem considered in this paper is that of a plane, stationary 
shock wave in an inviscid radiating grey gas. The mathematical difficulties of 
the problem are associated with the fact that governing equations are noii- 
linear and of integro-differential form (see, for example, Vincenti & Kruger 1965). 
The problem has been studied by Clarke (1962), Heaslet & Baldwin (1963), and 
Mitchner & Vinokur (1963)) among others. On the basis of the exponential 
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approximation (or its equivalent, the differential approximation), these investi- 
gators were able to obtain a set of equations of purely differential form from 
which results can be obtained by numerical integration. In  order to assess the 
accuracy of the exponential approximation, Pearson (1964) has performed 
numerical integration of the exact non-linear integro-differential equations for 
this problem and concluded that the exponential approximation is accurate to 
1 % in velocity. Later, Vincenti & Kruger (1965) considered the same problem 
for the special case when the radiative heat flux is small compared to the con- 
vective flux as characterized by large Boltzmann number (Bo). Since the effect 
of the radiation is small for this special case, the governing equations can be 
linearized with respect to the non-radiating situation. Analytical solutions 
within the framework of linearized theory and the differential approximation 
were obtained and expressions for disturbed quantities expanded to the order of 
1/Bo were given. All of these investigations have neglected the effect of scattering. 

In problems such as the rocket exhaust plume which contains a large amount 
of particles, the effect of scattering is important (Rochelle 1967, Carlson 1966, 
Fontenot 1965). In  this paper, we shall obtain an exact analytical solution to 
the same problem considered by Vincenti & Kruger (19651, taking into con- 
sideration the effect of isotropic scattering. Although Vincenti & Kruger give 
their solution in the differential approximation to order l /Bo,  consistent with 
the linearization, we choose to solve the exact linearized integro-differential 
equations without further expansion in powers of 1/Bo for the purpose of com- 
paring the results numerically with the differential approximation under the 
same conditions. It will be shown that the governing equations can be combined 
to yield two coupled linear integro-differential equations. By separation of 
variables similar to that of the previous paper by the same authors (Cheng & 
Leonard 1970), these integro-differential equations are reduced to an integral 
equation similar to that which arises in neutron-transport theory (Case & 
Zweifel 1967). The solution is then obtained in a manner similar t o  that used in 
the two-half-space problem considered by Mendelson & Summerfield (1964). 

A closed-form solution is obtained for the disturbed quantities in the flow 
and radiative fields. Explicit analytic expressions are obtained for the disturbed 
quantities immediately upstream and downstream from the shock. Quantitative 
comparisons of the numerical results of the exact solution and the solution 
based on the differential approximation are made. The effect of isotropic 
scattering is discussed. 

2. Governing equations and boundary conditions 
Consider a steady normal shock wave located at x = 0. If the subscript 00, j  

denotes conditions at infinity, withj  = 1 , 2  representing the conditions in front 
of (z < 0) and behind the shock (z > 0) ,  respectively, the linearized equations 
of state, continuity, and momentum for an inviscid planar radiative flow can 
be combined to give 
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whereas the equations of energy and state can be combined to yield 

where T‘, uf, and q’ are, respectively, the disturbed temperature, velocity, and 
radiative heat flux; M,, p,) and u, are the Mach number, density, and velocity 
a t  infinity; y and R are the specific heat ratio and the gas constant. The linearized 
radiation-transport equation for a grey gas in local thermodynamic equilibrium 
with isotropic scattering taken into consideration can be written as 

where and asm,i are, respectively, the absorption and scattering coefficients 
referred to conditions at infinity, and p = cos19, with 0 denoting the direction 
of propagation of radiation with respect to the positive x axis. The radiative 
intensity I f ( x , p )  is related to the radiative heat flux by 

Integrating (3) with respect to p and with the aid of (1)  and (4), we can rewrite 
( 2 )  in the form 

( 5 )  

which together with (3) are the governing equations for the two unknowns T f  
and I’. 

At the shock ( x  = 0 )  the radiative intensity is continuous, that is, 

T: 1 T: 2 I’(O-,p) + (T = I’(O+,p) + (T *, 
7 l  

where 0- and Of denote conditions immediately in front of and behind the shock. 
At infinity (x-t  -t co), both T’ and I’ must vanish. 

We now assume that the solution is a linear combination of terms of the form 

I’(x,p) =Ar)exp [ -~ ,,z] @L5’(p) (j = 1,2) )  (7 )  

and 

where a,, = 
sion coefficients to be determined. The function @tj)(p) remains to be found. 

+ uSm, j), v is the separation variable, A:’ and Cf) are expan- 

Substitution of (7)  and (8) into (3) and (5) leads to 

and 
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which can be combined to give 
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where 

denoting the Boltzmann number. It is worth noting that PI is a positive quantity 
since > 1 whereas p2 can either be positive or negative, depending on 

I/&. For convenience we shall refer to the cases Nm,,2 l/,/y as the 
strong shock and the weak shock. w j  is a positive quantity with magnitude 
less than 1 (for the case of wi = 1, i.e. the case of a pure scattering gas, the 
radiation-transport equation is decoupled from the gasdynamic equations and 
we have the non-radiative gasdynamic equations for the flow field; thus, in this 
paper, we shall consider 0 < w j  < 1). 

3. Method of singular eigenfunction expansions 
Except for the appearance of the function g j  (v), (1  1 a)  is similar to an integral 

equation in neutron-transport theory, which has been treated by Case & Zweifel 
(1967). The solution of this problem can now be obtained by the method similar 
to the problem of neutron transport in two half spaces considered, for example. 
by Mendelson & Summerfield (1964). 

Since (1 1 a) is homogeneous and with the integral representing a pure number, 
we can choose the normalization condition such that 

@.tj’(p)dp = 1, S’, 
so that (1 1 a)  becomes 

We now search for values of Y which give non-trivial solutions for cDp)(,u). 

(i) If the value of u does not lie on the real line in the interval ( -  1, l ) ,  (13) 
The analysis depends upon the location of u in the complex plane. 

can be solved to give 

which has to be satisfied with the normalization condition (12) to give 

v u + l  In- = 0. A,(u) = 1 -- __ - 
2g j ( v )  v - 1  

Equation (15) is a transcendental equation for the determination of the discrete 
eigenvalues v. It is noted that the function Aj  ( u )  in (15) has a pole a t  

Y = pi/( 1 - W j )  
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and a branch cut along the real line from - 1 to 1, and is analytic elsewhere. 
It follows from the Plemelj formulas (see, for example, Muskhelishvili 1953) 
that the boundary values of Aj (v), approaching from above ( + ) and below ( - ) 
the cut, are 

where P denotes the principal value. 

one or two, depending on the values of B j  ( k l), where Oj (v) is given by 
It is shown in appendix A t'hat the number of finite roots of Aj (v) is either 

which in turn depend upon the parameters appearing in gj(v). We will not 
concern ourselves with the root v = 00 since the corresponding solutions for T' 
and I' are constants that must vanish in order to satisfy the conditions at  
infinity. The result of the analysis of appendix A is summarized in table 1, 
where vji denotes the discrete roots of (15), with the first subscript representing 
the particular medium ( j  = 1 for x < 0,  and j = 2 for x > 0) and the second 
subscript representing the sign of the root (i = 1 for a negative root and i = 2 
for a positive root). 

(ii) If v lies on the real line between the interval ( -  1, l), the solution of (13) 
is given by 

where P indicates that the principal value is to be understood when integrating 
an expression involving a>p)(,u). The second term in (18) represents the homo- 
geneous solution (see, for example, Lighthill 1960). The function cDv'(v) given 
by (18) has to satisfy the normalization condition (12) which gives for A, (v) 

Since hi (v) can always be chosen such that (19) is satisfied, any value of v on the 
interval ( -  1,l) is an acceptable eigenvalue. It follows from (16) and (19) that 

A? ( V) - AT ( V )  = niv/gi ( V) , (20a) 

Ai+(v)+A;(v) = 2hj(v), (20b)  

and A; (v) = hj(v) (niv/2gj(v)) (j = 1,2). (20c) 

Thus the solution for I ' ( x , p )  can be written as a superposition of the eigen- 
functions given by (14) and (18) each multiplied by the exponential in x as 
given in (7). In  order to satisfy the boundary conditions at  infinity (x+ + a), 
the coefficients associated with the positive eigenvalues (v > 0 )  in medium 1 
(5 < 0)  and the coefficients associated with negative eigenvalues (v < 0 )  in 
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medium 2 (x > 0 )  must vanish. It follows from (7), (14), and ( 1 8 )  that, for 
x > 0, 

and, for x < 0, 

where we have introduced the notation K j  ( k 1 )  = k 19, ( k 1 ) / ~  so that the &st 
term in ( 2 l a )  and ( 2 1 5 )  vanishes for the case when I9,(l) = 0 (see table 1 ) .  
Similarly, with the aid of ( l o ) ,  ( 1 2 ) ,  and (8), the solution for T' is given by 

To obtain expressions for the coefficients a j j  and A,(v)  in ( 2 1 )  and ( 2 2 ) ,  we 
first impose (6 )  on ( 2 1 )  to yield 
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It is convenient to introduce the notations 
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Equations (23a)  and (23b) can then be written as 

(25 )  
v A ( v ) d v  

(-1 < / h <  1). 
-1  2g(v ) (v -P )  

@'(PI = A h )  4 P )  + P I  

As a first step in solving the singular integral equation (25) for A ( v ) ,  we introduce 
a function n(z) given by 

n(z) = - 

If A(v) /g(v)  is assumed to be sufficiently well behaved, n(x) has the following 
properties: (i) n(x) is analytic in the complex plane cut from - 1 to + 1 along the 
real axis. (ii) It goes to zero a t  least as fast as l / z  at  infinity. It follows from (26) 
and the Plemelj formulas that the boundary values of n(z) are given by 

and 

With the aid of (27a) ,  (27b) ,  and ( ~ O C ) ,  (25)  can be rewritten as 

where 

(27b)  

Note that the notation for A+@), although convenient, is somewhat misleading 
since there exists no analytic function which has boundary values A*@). 

To solve (28), it is necessary to construct a function ~ ( z )  which is analytic in 
the complex plane cut from - 1 to + 1 along the real line with its boundary 
values satisfying the ratio condition 

X + ( P ) k ( P )  = A+(P)/n-(P) ( -  1 < P 11, (29) 
and with the property that it is non-vanishing in the complex cut plane. It can 
be shown (see appendix B) that this function is given by 

x(4  = XllW x 2 2  ( z ) ,  (30a) 

where 

and 
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It should be noted that Xjz(z) is continuous across ( -  1 , O )  whereas Xjl(z) is 
continuous across (0,l) .  

Equation (28) with the aid of (29) can therefore be written as 

n+(P)X+(P) - n-(P)x-(P) = Y ( P )  @‘(P), (31a) 

The last relation in (31b) is obtained by using (20) and (29). It follows from (31a) 
and the Plemelj formulas that the function n ( z )  given by 

has boundary velues n*(,u) which satisfy (31a). Substitution of (23c) into (32) 
leads to 

where we have used the identities (see appendix C) 

In order that the function n(z) given by (33) vanish at least as fast as l / z  at 
infinity (i.e. property (ii)), it is required that 

(i) for K2(1) = 0 ,  we have 

(ii) for all other cases, we have 

and 

which are obtained by expanding the function n ( z )  in a Lament series about 
infinity and letting z- foo.  In  arriving at  (35) we have also made use of the 
relations 

lim ~ ( z )  = 1/z for K2(1)  = 0, and limX(z) = - 1/z2 
z-+m z - m  

for other cases, which follow from (30). 
With the aid of ( 2 7 b ) ,  (33) and (35), the coefficient A(v)  is given by 

4 v )  = L ( v )  w4, ( 3 6 4  

where 
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and 

In arriving at ( 3 6 c ) ,  we have made use of (30a), (20a) and the identity (see 
appendix D) 

Xji Xjz ( 2 )  = Qj ( 2 )  Aj (21, (37a) 

where 

Equations (21) and ( 2 2 )  with coefficients determined from ( 3 5 )  and ( 3 6 )  are the 
solution to this problem. The solution is thus in terms of the function Xj i (x )  
given by ( 3 0 ) ,  that can be evaluated numerically. 

Once the coefficients are obtained? other disturbances can be found from 

- vA1(v)exp (- ;-) %,1X dvj (x < 0) ,  ( 3 8 b )  

I-2nallexp[-Tj-2;rrJ0 G D ,  1 X  Al(v)exp[-yj  a m ,  1 X  ( z <  0). ( 3 9 b )  
-1 

and 

4. Explicit expressions for disturbed quantities at the shock 
Simplifying expressions can be obtained for the flow and radiative quantities 

immediately upstream and downstream of the shock. It follows from (21a), 
(21 c )  and ( 6 )  that the radiative intensity at the shock is given by 

and 
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It is noted that the functions F(p) and G(p) have the following properties: 
(i) F(z)  is analytic in the complex plane cut from 0 to 1 and vanishes at  infinity. 
(ii) G(z)  is analytic in the complex plane cut from - 1 to 0 and vanishes at  infinity. 

We shall now obtain an explicit expression for a(%). The function G(z)  can 
then be found in a similar manner. It follows from (4 lc )  that 

which, with the aid of (36), can be written as 

We now assume that the function F ( z )  is of the form 

x (4 
x 2 2 1 . 4  

P(z) = H ( z )  12 + R(z),  (43) 

where H(x)  and R(z) are analytic functions to be determined. The first term in 
(43) will take care of the proper discontinuity of the function P(z) as given by 
the relation (42), whereas the second term will ensure that F(z)  is regular in the 
complex cut plane and vanishes at  infinity. The function H(x) can easily be 
obtained by comparing the discontinuity resulting from (43) with that of (42). 
Wit,h the aid of (37), ( 2 0 ~ )  and (19), we obtain 

Thus the function H ( z )  has a pole at z = vo when K,(l) = 0 and has poles at 
z = vo and z = v,, when K2(1)  = 1. The function R(z) is obtained by requiring 
that F(z )  be regular at  these values of z and vanish at infinity. This yields 

The function G(z) can be obtained in a similar fashion by assuming the form 
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It follows from (22a) ,  (22b)  and (E 4) that 

With the aid of (38a)  and (E 4), we have 

~ ' ( 0 )  = K2(1) 2na221/22 (50)  

Making use of (39a), (39b) and (E 5 ) ,  we have 

and 1; (0-) = - Zna,, - 4ng1 (0) G(0)  - (1 - wl) G ( ~ WIP1 )] (wl =I= w2). (51b) 
1-0, 

I t  is worth noting that, €or the special case of w2 = 0, the second term in (51a)  
becomes indefinite (a similar situation occurs in (51b) when w1 = 0). In this 
casc, the substitution of (44) and (45) in ( 5 l a )  and letting w2+0 leads to 

Furthermore, for the special case when o1 = w2, a limiting process must be 
applied to (51). The resulting expressions, however, are too complicated to be 
quoted here. For the numerical calculations, it is in fact easier to evaluate the 
expressions given by (3%) and (396) with x = 0 instead. 



Linearized #ow of a grey ,gas 685 

5. Solution based on the differential approximation 
The solution of the linearized shock wave for a non-scattering, radiating gas, 

based on the differential approximation and accurate to 1/Bo, was obtained by 
Vincenti & Kruger (1965). In order to compare the solution based on the differen- 
tial approximation to that of the exact solution obtained in the previous sections, 
we shall now extend the solution of Vincenti & Kruger to include the effect of 
isotropic scattering. 

The differential approximation of the linearized radiation-transport equation 
with isotropic scattering is (Cheng 1965) 

dq'ldx = --a: a=, j (I;- 16c~T$,~T') ,  (53) 

and dI;/dx = - 3a,,jq'. (54) 

I6aT3,,,PjdT'ldx-aa,,jI;+ 16aam,j~!P2,jT' = 0, (55) 

These, together with (5) rewritten in terms of I& namely, 

are the governing equations for the problem. Boundary conditions at  the shock 
are 

1; ( O - )  + 4aT4,, = I ;  ( O + )  + 4uT& 2, 

and q'(0-) = q'(O+). 

At infinity, the disturbances are required to vanish. 

(56) and (57) is 
The solution to the differential equations (53)-(55) with boundary conditions 

(58) 
T' 

where 

and 

The constants v j j  are determined from 

v2.+vii-- 1 = 0, 
33 3pj 3(1-wj) 

where vll is the negative root of (61) when the equation is applied to medium 1 
(x < 0 ) ,  and vZ2 is the positive root of (62) when it is applied to medium 2. 
Equation (61) would be identical to the dispersion relation given by (15)) after 
the logarithmic term in that equation is expanded in a power series for v $ 1 
with the first two terms in the series retained. 
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The radiative intensity in the differential approximation is given by (Cheng 
1966) 

where I; and q' are given, respectively, by (59) and (60). The disturbed velocity 
and density are given by (40). 

6. Discussion of numerical results 
The exact solution, for the disturbances as given by (21), (22 ) ,  (38)-(40), 

as well as the approximate solution given by (58)-(62), are computed for the 
following eight cases (with 7 = 1-4 and Bo, = 10): 

(1)  Mm,l = 1-1, u1 = 0, u2 = 0; 

(2) Mm,l = 1-1, u1 = 0, u2 = 0.9; 

(3) Ma,l = 1-1, w1 = 0.9, u2 = 0; 

(4) &fa,, = 1-1,  w, = 0.9, u2 = 0.9; 

(5) Ma,l = 1.4, W ,  = 0, w2 = 0; 

(6) Ma,, = 1-4, W ,  = 0, w2 = 0.9; 

(7) Nm,l = 1-4, OJ, = 0.9, u2 = 0; 

(8) Mm,, = 1-4, OJ, = 0.9, u2 = 0.9. 

This set of conditions was chosen to cover all possibilities concerning the discrete 
roots as shown in table 1. In particular, cases 1-4 with 

Mm,2 = 0.9118 (0.9118 > 1/47)  

represent a weak shock, whereas cases 5-8 with 

NaS2 = 0-7397 (0.7397 < 1/47)  

represent a strong shock. To check the accuracy of the computations, the 
disturbances immediately upstream and downstream of the shock, as given by 
(41) and (49)-(52), are also computed. 

For convenience of presentation, the disturbances are normalized to the 
condition at infinity downstream, namely, 

F = Y/!I&, 21 = u'/um,2, I = 17(uF$,2/7T), 

I. = IA/4crT4,,2 and q = q'/uT$,2. 

The physical distance isreferred to the mean free path ofradiation, i.e. yi = a,,, x, 
where yi is the (dimensionless) optical path length. 

The values of the discrete roots, vjj, of (15) are tabulated in table 2. For a 
specific shock strength and radiation level, it is shown that the discrete roots 
upstream of the shock, vli, depend only upon the amount of scattering w1 
upstream and are independent of u2 downstream. Similarly, the values of the 
vZi depend only upon u2 and are independent of w,. Since the damping factor 
of the discrete mode is just the reciprocal of vii, we note from this table that the 
damping of the discrete mode decreases as the amount of scattering is increased. 
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The dimensionless magnitudes of the disturbances for a normal shock wave 
with different shock strength and the amount of scattering are tabulated in 
table 3. Representative results of this table are presented in figures 1-6, where, 
instead of disturbed quantities, the total dimensionless quantities are plotted. 

The results of cases 1 and 3 are plotted in figure 1, which shows the effect of 
scattering when the gas upstream of the shock is changed from a non-scattering 
gas (wl = 0 )  to a scattering-dominated gas (wl = 0.9). It is shown that the 
average radiative intensity (I,,) and the radiative heat flux as obtained from the 
exact solution and the differential approximation are continuous at  the shock. 

Case V12 

- 1 
2 
3 1.228 
4 1.228 
5 
6 
7 1-484 
8 1.484 

- 

- 
- 

v11 

- 2.062 
- 2.062 
- 2.975 
- 2.975 
- 1.423 
- 1.423 
- 2.445 
- 2.445 

v22 v21 
1.195 - 
2.240 - 1.618 
1.195 - 
2.240 - 1.618 

- 1.149 
1.652 - 2.193 
- - 1.149 

1.652 - 2.193 

- 

TABLE 2. Values of the discrete roots of equation (15) 

The heat flux and average radiative intensity disturbances at  the shock as well 
as the temperature and velocity disturbances immediately upstream and down- 
stream of the shock are larger for a non-scattering gas (wl = w2 = 0). Downstream 
of the shock where there is no scattering for both cases, the disturbances are lar- 
ger for the case with w1 = w2 = 0 than that of w1 = 0.9 and w2 = 0. This situation 
continues to hold for the region upstream near the shock. Further upstream of the 
shock, however, the situation is reversed, i.e. the magnitudes of the disturbances 
become smaller for the case of w1 = w2 = 0, which is a direct consequence of the 
fact that the damping factor upstream decreases as scattering is increased, as 
discussed previously. A similar situation occurs if, instead of upstream, scattering 
of the gas downstream is increased while that of upstream remains the same, 
as is evident from figure 2. From figures 1 and 2, it is noted that, regardless of 
the amount of scattering and the strength of the shock, the velocity disturbances 
are always negative ahead of the shock and positive behind the shock. The 
temperature disturbances, however, are always positive upstream of the shock. 
Downstream of the shock, the temperature disturbance is negative for 

< 1/47 (figure 2). The radiative 
heat flux is everywhere negative (i.e. in the direction opposite to the direction 
of the flow), regardless of the amount of scattering and shock strength. 

By numerical integration of the exact non-linear differential equations, 
Pearson (1964) reported that the differential approximation yields less than 1 % 
error in velocity for the problem of non-linear shock wave. The corresponding 
linearized problem as shown in figures 1 and 2 do show that the differential 
approximation is within 1 yo for velocity, temperature, and average radiative 

> 1/47 (figure 1) and positive for 
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intensity. The error of the radiative heat flux, however, is much larger than 1 yo. 
This is due to the fact that the heat flux is a disturbed quantity while total 
quantities are used in the error computation for velocity, temperature, and the 
average radiative intensity. 

A d  
A-- - A--A 

-4 -2 0 2 4 

71 
FIGURE 1. The effect of scattering in a we& normal shock wave, as obtained by the exact 
solution and the differentialapproximation(M,,, = 1.1, Mm,2  = 0.9118, y = 1-4, Bo, = 10). 
w1 = o2 = 0: - exact; A, ., a,+, diff. approx. w1 = 0.9 ,w,  = 0.9: - - - -exact; 
A ,  a, 0,O. diff. approx. 

Intuitively, increasing the amount of isotropic scattering tends to make the 
radiation field more isotropic. This is indeed supported by both the exact 
solution and the differential approximation, as is shown in figures 3-5. Further- 
more, the exact solution for the radiative intensity is shown to be discontinuous 
at 8 = in (or p = 0), whereas the differential approximation predicts erroneously 
that the radiation intensity is a continuous and linear function of p, which is 
represented by straight lines in figure 5. 

44 FLM 45 
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As is discussed in the previous section, the disturbances in general consist of 
a discrete mode and a continuum mode. For a strong shock with absorption- 
emission dominated gas downstream, however, the discrete mode disappears 

I 

-4  -2  0 2 4 

T 

FIGURE 2. The effect of scattering in a strong normal shock wave, as obtained by the 
exact solution and the differential approximation ( M ,  = 1.4, M,,2  = 0.7397, y = 1.4, 
Bo, = 10). w1 = w, = 0: -- exact; A, ., 0 ,  +, diff. approx. w1 = 0 ,  w2= 0.9: 
_ _ _ _  exact; A,  0, a, 0, diff. approx. 

downstream of the shock. This situation is illustrated in figure 6, where i t  is 
also shown that, while the magnitude of the discrete mode is greater than that 
of the continuum mode upstream of the shock, the damping of the discrete 
mode is smaller than that of the continuum mode. For this reason, only the 
discrete mode persists far upstream of the shock. 
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90' 

d 
I 

. .  180" 
IlO OIX I 016 ' 014 ' Of2 10 I 0.2 0.4 0.6 . 0:X 1.0 
u O3 

I(O,l9 ) 1 
FIGURE 3. The effect of scattering on the radiative intensity (at the shock) in polar co- 
ordinates for a weak shock, as obtained by the exact solution and the differential 
approximation (&I,,, = 1.1, Mm,2 = 0.9118, y = 1.4, Bo, = 10). w1 = w2 = 0:  -, 
exact; 0,  diff. approx. w1 = 0.9, w2 = 0: ---, exact; 0, difF. approx. 

90" 

'.yy . .  
1.0 018 I 016 014 ' 012 0 I 0.2 0.4 0:6 0.8 

I(0.0) 

FIGURE 4. The effect of scattering on the radiative intensity (at the shock) in polar co- 
ordinates for a strong shock, as obtained by the exact solution and the differentiat 
approximatiofi (M,, - - 1.4, = 0: -, 
exact; 0 ,  diff. approx. o1 = 0, w2 = 0.9: - - -, exact; 0, diff. approx. 

= 0.7397, y = 1.4, Bo, = 10). w1 = 

44-2 
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7. Concluding remarks 
An exact solution has been obtained for the problem of linearized flow through 

a normal shock wave of an emitting, absorbing, and scattering grey gas by an 
extension of the method of singular eigenfunction expansions. To the best of 
the authors’ knowledge, this is the first exact solution obtained in the linearized 

lu 

FIGURE 5 .  Radiative intensity (at the shock) as a function of p, as obtained by the exact 
solution and the differential approximation = 1.4, Ma,* = 0.7397, y = 1.4, Bo, = 10). 
w1 = w z  = 0: - , exact; -0-, diff. approx. w, = 0, w2 = 0.9: ---- , exact; --a--, 
diff. approx. 

analysis of a problem in radiative gasdynamics with scattering taken into 
consideration. The numerical results of this paper may be used as a testing case 
for future reference. 

The effects of isotropic scattering in a normal shock wave may be summarized 
as follows: 

The exact solution shows that, in general, the disturbances consist of a 
discrete mode and a continuum mode. If the gas downstream of a strong shock 
is absorption emission-dominated, the discrete mode disappears downstream of 
the shock. 

When both the discrete mode and the continuum mode of disturbance exist, 
the amplitude of the continuum mode at  the shock is smaller than that of the 
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discrete mode, whereas the damping of the continuum mode is larger than that 
of the discrete mode. Thus only the discrete mode persists away from the shock. 

Although the damping upstream ( j  = 1) depends only upon w1 and is in- 
dependent of w2, the amplitudes of the disturbances depend both on w1 and 02. 
Similarly, although the damping downstream (j = 2) depends only on w2 and 
is independent of wl, the amplitudes of disturbances depend on w1 and w2. 

-0.5 I I I I I I 
-4 -3 -2 - I  0 1 2 3 4 

7 
FIGURE 6. The contributions of the discrete and the continuum modes on the disturbances 
in a strong shock wave with absorption-dominated gas downstream of the shock as 
obtained from the exact solution (Mm,l = 1.4, &fm,2 = 0.7397, w1 = 0, O2 = 0, y = 1.4, 
Bo, = 10). Closed symbols, discrete mode; open symbols, continuum. -A-, -d-, T; 
-m-, -a-, I , ;  -e-, -0-, q. 

The damping of the disturbances decreases as the amount of scattering is 
increased in the gas. 

The magnitudes of discontinuity in velocity and the temperature disturbances 
at the shock increase as the amount of scattering in the gas is increased. 

The effect of isotropic scattering tends to make the radiation field more 
isotropic. Consequently, the differential approximation is more accurate as the 
amount of scattering in the gas is increased. 

The authors would like to take this opportunity to thank M. W. Rubesin for 
his interest. Thanks are also due to Mrs E. Williams for her capable assistance 
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in the numerical work. For the case of the first author (P.C.), this work was 
performed while he was in receipt of a National Academy of Sciences-National 
Research Council Post-doctoral Resident Associateship. 

Appendix A. Number of roots of equation (15) 
Consider the function A(z) given by 

where 

z z + l  
2g(z) 2-  1 

A@) = l--ln-, 

p- (1 - 0) 2 

= w p - ( l - w ) z '  

FIGURE 7. Sketch of the contour C for eqimtion (A4). 

We wish to find the number of positive and negative zeros of A(z) in the finite 
cut plane. To simplify the discussion we will actually consider the function Q ( x )  
given by 

It is noted that the function A(x) has a zero at infinity whereas Q(z)  does not, 
and A(z) has a simple pole at z = /I/( 1 - w )  but  Q ( z )  is finite and Ron-zero there. 
Otherwise, the number and location of the finite zeros of Q(z )  are identical to 
those of A(z). 

To find, for example, the number of finite positive zeros of Q(z ) ,  consider the 
closed contour in the right half cut plane as shown in figure 7. Since Q(z)  has no 
poles, the principle of the argument (see, for example, Copson 1955) gives the 

Q ( z )  = [P-(l-w)z]A(z).  (A 3) 
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number of zeros of Q(z) within the closed contour C in the right half plane, 
NF, as 1 

271 
N," = -AargQlc, 

where AargQIc represents the change in argument of SZ around the closed 
contour C consisting of C?, C,, and C,. Expanding the function Q ( x )  for large z, 

t -3.0 

. "  - 1.0 - 0.5 0 0.5 1 -0 

t 

FIGURE 8. The function 0(t)  versus t its given by equation (A7). ___ , /3 > ( l / w )  - 1 or 
p < l - ( l / w ) ;  - .  -, 0 < p < ( l / w ) - - l ;  - - - - ,  1 - ( l / w )  < p < 0. 

it is easy to show that the function Q(z)  is constant along C,(R-+co) so that the 
change in argument along C, is zero. Along C; (i.e. z = & ik: where Ic is real and 
positive) we have 

SZ( k i k )  = p[1 Twktan-l(l/k)] T i k ( l - w ) [ l  Tktan-l(l/k)]. (A 5) 

Since the real part of a( & ik) never vanishes and the imaginary part of Q( ilc) 
vanishes at the end points of C?, and since arg Q(ik)  is a continuous varying 
function of k, it follows that the change in argument in O(x) along CF is also zero. 

We now consider the change in argument of Q(z) along C, ; we have 

(1/WAargfiIc++c- = (1/2~)A(argQ+-argSZ-)I~~,~i 
= ( i / m m - o ~ o ~ .  (A 6'1 

where 
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and we defhe O(0) = 0. It follows from (A 4) that 

P. Cheng and A .  Leonard 

N: = 8(1)/7r. (A 8 )  

Similarly, one can show that the number of negative roots (i.e. roots in the 
finite left half plane) is given by 

N f  = -8( - l)/n. (A 9) 

Thus the number of positive and negative roots depends on the values of H( & 1) .  
To evaluate the value of 8(t) given by (A 7) in connexion with (30b)  and 

( ~ O C ) ,  care must be taken to ensure that O ( t )  is a continuous function and that 
8(t) vanishes at  t = 0. The function O ( t )  is sketched in figure 8 where it is shown 
that 

n, if p > (l/u)- 1, 

0, if p <  ( l / u ) - 1 ,  
p > 0; S(1) = { 

8 ( - 1 )  = - n, 

(ii) p < 0; e(i) = n, 

I 0, if p > 1- (1 /u ) ,  

-n, if p <  1 - ( 1 / ~ ) .  
0 ( - 1 )  = 

(A 10a) 

(A 106) 

The results of (A 8)-(A 10) as applied to upstream and downstream of the shock 
are given in table 1. 

Appendix B. The function ~ ( z )  

where 8(t) is given by (A 7), is analytic in the complex plane cut from - 1 to + 1 
with its boundary values satisfying the ratio condition 

x+(P)/x-(P) = A+(P)/A-(PL) ( -  1 < P < 1), (B 2) 

and is non-vanishing in the cut plane. 

be written as 
Proof. With the aid of the Plemelj formulas, the boundary values of ~ ( z )  can 
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To show that x ( z )  is non-vanishing in the cut plane, we note that z = - 1 and 
z = 1 are the only points where the integral in (B 1 )  has a possibility of being 
infinite. Consider first the point x = - 1 : we can rewrite (B 1) as 

where the integral no longer has a logarithmic singularity a t  z = - 1; con- 
sequently, x ( z )  is non-vanishing at z = - 1. Similarly, i t  can be shown that 
x ( z )  is non-vanishing near z = 1.  

FIGURE 9. Sketch of the contour C for equation (C2).  

Appendix C. Identity 

where y(p) is defined by (31b). 
Proof. From Cauchy's theorem 

where C is a closed contour containing z (figure 9) within which the function 
x ( z )  is analytic. The contour C consists of segments C,i, Ci, C;l, and curves C, 
and C:. Since the integrand vanishes on C, ({+LO), and since the value of the 
integra,ls for C: are zero, it  follows from (C 2) that 
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which can be written as 

P. Cheng and A .  Leonard 

where we have made use of (31b). 

Appendix D. Identity 

Consider the function W ( z )  defined by 

This function is analytic everywhere in the cut plane since both of the zeros and 
poles of A,(z) have been cancelled by appropriate factors. We now show that 
W(z)  is continuous across the cut. It follows from (D 2) that 

Consider for the case of z > 0: (D 3) reduces to 

~- W+(4 
w-(2) - l7 

where we have made use of the fact that Xjl(z) is continuous for z > 0 and (29). 
Similarly, i t  can be shown that (D 3) reduces to (D 4) for x < 0. Thus (D 4) 
holds for all z .  Furthermore, as z-+co, (D 2) gives 

Thus W ( z )  is analytic in 
to -Pj(l  - w j )  as z-fco. 

or finally 

the cut plane, is continuous across the cut, and is equal 
By Liouville's theorem, we have 

W ( z )  = -pj(l - w j ) ,  (D 6) 

Appendix E. Identity 

Proof. The function F ( z )  is defined by 
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Substitution of (1 1 b)  into (E 2) yields 

It is noted from (42) and (E 2) that 

Equation (E 3) with the aid of (E 4) reduces to (E l),  which completes the proof. 
By setting z = 0 in (E l),  we obtain 

jo1A2(U)dv = Z g z ( 0 )  rw) - (1 - w 2 )  w J Z P 2 / ( 1  --2))1,  (E 5 )  

whereas, multiplying (E 1) by x and letting x -+ co, we get 

Analogously, we can show that similar relations hold for Al(v) ,  G(z) and 
w w % / ( 1 -  w1)) * 
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